首页> 外文期刊>Image Processing, IET >Enhanced copy–paste forgery detection in digital images using scale-invariant feature transform
【24h】

Enhanced copy–paste forgery detection in digital images using scale-invariant feature transform

机译:使用比例不变特征变换增强数字图像中的复制粘贴伪造检测

获取原文
获取原文并翻译 | 示例

摘要

Image forgery detection and localisation is one of the principal problems in digital forensics. Copy-paste forgery in digital images is a type of forgery in which an image region is copied and pasted at another location within the same image. In this work, the authors propose a methodology to detect and localise copy-pasted regions in images based on scale-invariant feature transform (SIFT). Existing copy-paste forgery detection in images using SIFT and clustering techniques such as hierarchical agglomerative and density-based spatial clustering of applications with noise resulted many false pixel detections. They have introduced sensitivity-based clustering along with SIFT features to identify copy-pasted pixels and disregard the false pixels. Experimental evaluation on public image datasets MICC-F220, MICC-F2000 and MICC-F8 multi shows that the proposed method is showing improved performance in detecting and localising copy-paste forgeries in images than the existing works. Also the proposed work detects multiple copy-pasted regions in the images and is robust to attacks such as geometrical transformation of copied regions such as scaling and rotation.
机译:图像伪造检测和定位是数字取证中的主要问题之一。数字图像中的复制粘贴伪造是一种伪造,其中图像区域被复制并粘贴到同一图像内的另一个位置。在这项工作中,作者提出了一种基于比例不变特征变换(SIFT)的方法来检测和定位图像中的粘贴区域。使用SIFT和聚类技术(例如具有噪声的应用程序的分层聚集和基于密度的空间聚类)等图像中现有的复制粘贴伪造检测会导致许多错误的像素检测。他们引入了基于灵敏度的聚类以及SIFT功能,以识别复制粘贴的像素并忽略假像素。对公共图像数据集MICC-F220,MICC-F2000和MICC-F8 multi的实验评估表明,与现有技术相比,该方法在检测和定位图像中的复制粘贴伪造方面表现出更高的性能。提出的工作还可以检测图像中的多个复制粘贴区域,并且对于诸如复制区域的几何变换(例如缩放和旋转)之类的攻击具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号