首页> 外文期刊>Image Processing, IET >Image super-resolution using conditional generative adversarial network
【24h】

Image super-resolution using conditional generative adversarial network

机译:使用条件生成对抗网络的图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Recently, extensive studies on a generative adversarial network (GAN) have made great progress in single image super-resolution (SISR). However, there still exists a significant difference between the reconstructed high-frequency and the real high-frequency details. To address this issue, this study presents an SISR approach based on conditional GAN (SRCGAN). SRCGAN includes a generator network that generates super-resolution (SR) images and a discriminator network that is trained to distinguish the SR images from ground-truth high-resolution (HR) ones. Specifically, the discriminator network uses the ground-truth HR image as a conditional variable, which guides the network to distinguish the real images from the SR images, facilitating training a more stable generator model than GAN without this guidance. Furthermore, a residual-learning module is introduced into the generator network to solve the issue of detail information loss in SR images. Finally, the network is trained in an end-to-end manner by optimizing a perceptual loss function. Extensive evaluations on four benchmark datasets including Set5, Set14, BSD100, and Urban100 demonstrate the superiority of the proposed SRCGAN over state-of-the-art methods in terms of PSNR, SSIM, and visual effect.
机译:最近,对生成对抗网络(GAN)的广泛研究在单图像超分辨率(SISR)中取得了长足的进步。但是,重构的高频细节与实际的高频细节之间仍然存在显着差异。为了解决这个问题,本研究提出了一种基于条件GAN(SRCGAN)的SISR方法。 SRCGAN包括一个生成超分辨率(SR)图像的生成器网络和一个鉴别器网络,该网络经过训练可以将SR图像与地面真实的高分辨率(HR)图像区分开。具体来说,鉴别器网络使用真实的HR图像作为条件变量,它指导网络将真实图像与SR图像区分开,从而在没有该指导的情况下,与GAN相比,可以训练更稳定的发电机模型。此外,在生成器网络中引入了残差学习模块,以解决SR图像中细节信息丢失的问题。最后,通过优化感知损失函数以端到端的方式训练网络。在包括Set5,Set14,BSD100和Urban100在内的四个基准数据集上进行的广泛评估表明,在PSNR,SSIM和视觉效果方面,建议的SRCGAN优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号