首页> 外文期刊>Neurocomputing >Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning
【24h】

Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning

机译:单幅图像超分辨率,具有增强的拉普拉斯金字塔网络,通过条件生成对抗性学习

获取原文
获取原文并翻译 | 示例

摘要

Despite much progress has been made by applying generative adversarial network (GAN) to single image super-resolution (SISR), obvious difference remains between the details of reconstructed high-frequency and ground-truth because GAN is unstable that has a very high degree of freedom. To address this issue, we exploit conditional GAN (CGAN) for SISR, which leverages the ground-truth high-resolution (HR) image as its conditional variable to guide to learn a more stable model. To better reconstruct image with a large-scale factor, we further design an enhanced Laplacian pyramid network (ELapN) as the generator model of CGAN, which progressively reconstructs HR images at multiple pyramid levels. The proposed ELapN fuses low-and high-level features for the residual image learning achieves better generalization than those only based on high-level information. Finally, we train the proposed network via deep supervision using a combination of multi-level CGAN, VGG and robust Charbonnier loss functions to obtain high-quality SR results. Extensive evaluations on three benchmark datasets including Set5, Set14, B100 demonstrate superiority of the proposed method over state-of-the-art methods in terms of PSNR, SSIM and visual effect. (C) 2019 Elsevier B.V. All rights reserved.
机译:尽管通过将生成的对冲网络(GAN)应用于单图像超分辨率(SISR),但在重建高频和地面真理的细节之间存在明显的差异,因为GaN不稳定,具有很高的程度自由。为了解决这个问题,我们为SISR开发有条件的GaN(Cgan),它利用地面真理高分辨率(HR)图像作为其条件变量来指导学习更稳定的模型。为了更好地重建具有大规模因素的图像,我们进一步设计了一种增强的拉普拉斯金字塔网络(ELAPN)作为CGAN的发电机模型,其在多个金字塔水平下逐渐重建HR图像。所提出的ELAPN熔断器的熔断器为残余图像学习的低级别特征比仅基于高级信息的概率更好地实现了更好的泛化。最后,我们通过使用多级CGAN,VGG和强大的Charbonnier损失功能的组合来通过深度监督训练所提出的网络,以获得高质量的SR结果。在包括SET5,SET14,B100的三个基准数据集上的广泛评估展示了在PSNR,SSSIM和视觉效果方面通过最先进方法的提出方法的优越性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul20期|531-538|共8页
  • 作者单位

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing Peoples R China;

    Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol Nanjing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Single image super-resolution; GAN; Conditional GAN; Laplacian pyramid;

    机译:单图像超分辨率;GaN;条件GaN;拉普拉斯金字塔;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号