首页> 外文期刊>Image Processing, IET >Multi-perspective gait recognition based on classifier fusion
【24h】

Multi-perspective gait recognition based on classifier fusion

机译:基于分类器融合的多视角步态识别

获取原文
获取原文并翻译 | 示例

摘要

Gait recognition has been well known as a promising biometric, which is non-offensive and can identify a person from a distance. In this study, a novel ensemble learning framework for gait recognition, namely multi-perspective gait recognition based on classifier fusion is proposed. Firstly, by utilising bidirectional optical flow, a new algorithm for gait feature extraction is presented, which adaptively extracts the dynamic gait characteristics of walking persons. Secondly, two base classifiers, namely the support vector machine and the hidden Markov model, are trained using the extracted dynamic gait features and traditional gait energy images separately. Thirdly, a novel algorithm is presented for combining two types of base gait classifiers together on the decision level. Finally, the proposed framework by two experiments on the well-known CASIA and OU-ISIR gait databases is evaluated, respectively, and demonstrate the advantages of the proposed methods in comparison with others.
机译:步态识别已被公认为一种有前途的生物特征识别技术,它具有非攻击性,可以从远处识别一个人。本文提出了一种新颖的步态识别集成学习框架,即基于分类器融合的多视角步态识别。首先,利用双向光流,提出了一种新的步态特征提取算法,可以自适应地提取步行者的动态步态特征。其次,分别使用提取的动态步态特征和传统步态能量图像训练两个基本分类器,即支持向量机和隐马尔可夫模型。第三,提出了一种在决策层上将两种类型的基本步态分类器组合在一起的新颖算法。最后,通过在著名的CASIA和OU-ISIR步态数据库上进行的两次实验分别对提出的框架进行了评估,并证明了所提出的方法与其他方法相比的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号