首页> 外文期刊>Image Processing, IET >Trilateral convolutional neural network for 3D shape reconstruction of objects from a single depth view
【24h】

Trilateral convolutional neural network for 3D shape reconstruction of objects from a single depth view

机译:三边卷积神经网络用于从单个深度视图进行对象的3D形状重建

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors propose a novel three-dimensional (3D) convolutional neural network for shape reconstruction via a trilateral convolutional neural network (Tri-CNN) from a single depth view. The proposed approach produces a 3D voxel representation of an object, derived from a partial object surface in a single depth image. The proposed Tri-CNN combines three dilated convolutions in 3D to expand the convolutional receptive field more efficiently to learn shape reconstructions. To evaluate the proposed Tri-CNN in terms of reconstruction performance, the publicly available ShapeNet and Big Data for Grasp Planning data sets are utilised. The reconstruction performance was evaluated against four conventional deep learning approaches: namely, fully connected convolutional neural network, baseline CNN, autoencoder CNN, and a generative adversarial reconstruction network. The proposed experimental results show that Tri-CNN produces superior reconstruction results in terms of intersection over union values and Brier scores with significantly less number of model parameters and memory.
机译:在这项研究中,作者提出了一种新颖的三维(3D)卷积神经网络,用于从单深度视图通过三边卷积神经网络(Tri-CNN)进行形状重构。所提出的方法产生了对象的3D体素表示,该对象是从单个深度图像中的部分对象表面派生的。拟议的Tri-CNN在3D中结合了三个膨胀的卷积以更有效地扩展卷积接收场,以学习形状重构。为了在重建性能方面评估拟议的Tri-CNN,使用了可公开获取的ShapeNet和“大数据抓握计划”数据集。针对四种常规深度学习方法对重建性能进行了评估:即完全连接的卷积神经网络,基线CNN,自动编码器CNN和生成式对抗重建网络。拟议的实验结果表明,在结合值和Brier得分相交方面,Tri-CNN产生了出色的重建结果,并且模型参数和内存数量明显减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号