首页> 外文期刊>Image Processing, IET >Turning video into traffic data – an application to urban intersection analysis using transfer learning
【24h】

Turning video into traffic data – an application to urban intersection analysis using transfer learning

机译:将视频转换为交通数据–使用迁移学习的城市交叉口分析应用

获取原文
获取原文并翻译 | 示例

摘要

With modern socio-economic development, the number of vehicles in metropolitan cities is growing rapidly. Therefore, obtaining real-time traffic volume estimates has a very important significance in using the limited road space and traffic infrastructure. In this study, the authors present a video-based traffic volume and direction estimation at road intersections. To discriminate the vehicles from the remaining foreground objects, vehicle recognition is performed by training a deep-learning architecture from a pre-trained model. This method, called transfer learning, primarily circumvents the requirement of huge labelled datasets and the time for training the network. The video sequence is first detected for moving foreground regions or patches. The trained model is subsequently used to classify the vehicles. The vehicles are tracked, and trajectory patterns are clustered using standard techniques. The number and direction of vehicles are noted, which are later compared with the manually observed values. All experiments were performed on real-life surveillance sequences recorded at four different traffic intersections in the city of Kolkata.
机译:随着现代社会经济的发展,大城市的车辆数量正在迅速增长。因此,获得实时交通量估计值对使用有限的道路空间和交通基础设施具有非常重要的意义。在这项研究中,作者提出了基于视频的道路交叉口交通量和方向估计。为了将车辆与其余前景对象区分开,通过从预训练模型中训练深度学习架构来执行车辆识别。这种称为转移学习的方法主要是规避了巨大的标记数据集的需求以及训练网络的时间。首先检测视频序列是否有移动的前景区域或补丁。训练后的模型随后用于对车辆进行分类。跟踪车辆,并使用标准技术对轨迹模式进行聚类。记录车辆的数量和方向,然后将其与手动观察的值进行比较。所有实验都是在加尔各答市四个不同的交通路口记录的真实监控序列上进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号