首页> 外文期刊>Image Processing, IET >Affine invariant fusion feature extraction based on geometry descriptor and BIT for object recognition
【24h】

Affine invariant fusion feature extraction based on geometry descriptor and BIT for object recognition

机译:基于几何描述符和BIT的仿射不变融合特征提取

获取原文
获取原文并翻译 | 示例

摘要

It is difficult to recognise an image with affine transformation due to viewing angle and distance variations. Therefore, affine invariant feature extraction is a valuable technology in the field of image recognition. Inspired by bio-visual mechanism, an affine invariant for object recognition method based on a fusion feature framework is proposed in this study, which employs geometry descriptor and double biologically inspired transformation (DBIT). First, a shape feature of interest detector is adopted to detect contour features. Then, the area estimation of affine region detector is utilised to construct area ratio feature vectors. Second, an orientation edge detector is built to highlight the edges of different directions. On this basis, local space frequency detector is adopted to measure the spatial frequency at each direction and interval, which converts the output map into DBIT feature vectors. A weighted fusion strategy is performed based on Pearson correlation distance to fuse the geometry feature and DBIT feature. Some tests for Alphanumeric, Coil-100 MPEG-7, Mixed National Institute of Standards and Technology (MNIST) and Olivetti Research Laboratory face images database (ORL) database remain highly stable recognition accuracy, even when the shear factor is between −0.5 and  + 0.5. The experiment results show the authors’ proposed approach has a nice performance in feature invariance, selectivity and recognition accuracy.
机译:由于视角和距离变化,难以识别具有仿射变换的图像。因此,仿射不变特征提取是图像识别领域的一项有价值的技术。受生物视觉机制的启发,提出了一种基于融合特征框架的仿射不变量目标识别方法,该方法采用几何描述子和双重生物启发变换(DBIT)。首先,采用感兴趣的形状特征检测器来检测轮廓特征。然后,利用仿射区域检测器的面积估计来构造面积比特征向量。其次,构建方向边缘检测器以突出显示不同方向的边缘。在此基础上,采用局部空间频率检测器测量每个方向和每个间隔的空间频率,将输出图转换为DBIT特征向量。基于皮尔逊相关距离执行加权融合策略以融合几何特征和DBIT特征。字母数字,Coil-100 MPEG-7,美国国家标准技术研究院(MNIST)和Olivetti研究实验室的人脸图像数据库(ORL)数据库的某些测试即使在剪切因子介于−0.5和+之间时仍保持高度稳定的识别精度。 0.5。实验结果表明,作者提出的方法在特征不变性,选择性和识别准确性方面具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号