首页> 外文期刊>Image Processing, IET >Image segmentation algorithm based on superpixel clustering
【24h】

Image segmentation algorithm based on superpixel clustering

机译:基于超像素聚类的图像分割算法

获取原文
获取原文并翻译 | 示例

摘要

The main task of image segmentation is to partition an image into disjoint sets of pixels called clusters. Spectral clustering algorithm has been developed rapidly in recent years and it has been widely used in image segmentation. The traditional spectral clustering algorithm requires huge amount of computation to process colour images with high resolution. While one possible solution is reducing image resolution, but it will lead to the loss of image information and reduce segmentation performance. To overcome the problem of traditional spectral clustering, an image segmentation algorithm based on superpixel clustering is proposed. Firstly, the algorithm uses the superpixel preprocessing technique to quickly divide the image into a certain number of superpixel regions with specific information. Then, the similarity matrix is used to provide the input information to the spectral clustering algorithm to cluster the superpixel regions and get the final image segmentation results. The experiment results show that the proposed algorithm can effectively improve the performance in image segmentation compared with the traditional spectral clustering algorithm, and finally the substantial improvement has been obtained in respect of computational complexity, processing time and the overall segmentation effect.
机译:图像分割的主要任务是将图像划分为称为簇的不相交的像素集。近年来,光谱聚类算法发展迅速,并已广泛应用于图像分割中。传统的光谱聚类算法需要大量计算才能处理高分辨率的彩色图像。虽然一种可能的解决方案是降低图像分辨率,但是它将导致图像信息的丢失并降低分割性能。为了克服传统光谱聚类的问题,提出了一种基于超像素聚类的图像分割算法。首先,该算法使用超像素预处理技术将图像快速划分为具有特定信息的一定数量的超像素区域。然后,利用相似度矩阵为光谱聚类算法提供输入信息,对超像素区域进行聚类,得到最终的图像分割结果。实验结果表明,与传统的谱聚类算法相比,该算法可以有效地提高图像分割性能,在计算复杂度,处理时间和整体分割效果上均取得了实质性的提高。

著录项

  • 来源
    《Image Processing, IET》 |2018年第11期|2030-2035|共6页
  • 作者单位

    School of Computer Science and Technology, China University of Mining and Technology, People's Republic of China;

    School of Computer Science and Technology, China University of Mining and Technology, People's Republic of China;

    School of Computer Science and Technology, China University of Mining and Technology, People's Republic of China;

    School of Computer Science and Technology, China University of Mining and Technology, People's Republic of China;

    School of Information and Electrical Engineering, Xuzhou College of Industrial Technology, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    computational complexity; image colour analysis; image resolution; image segmentation; pattern clustering;

    机译:计算复杂度图像色彩分析图像分辨率图像分割模式聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号