首页> 外文期刊>Image Processing, IET >Deep learning-based approach to latent overlapped fingerprints mask segmentation
【24h】

Deep learning-based approach to latent overlapped fingerprints mask segmentation

机译:基于深度学习的潜在重叠指纹蒙版分割方法

获取原文
获取原文并翻译 | 示例

摘要

Overlapped fingerprints can be potentially present in several civil applications and criminal investigations. Segmentation of overlapped fingerprints is a required step in the process of fingerprint separation and subsequent verification. Overlapped fingerprint segmentation is performed manually (and the resulting manually drawn masks are a required additional input) in all of the overlapped latent fingerprints separation approaches in the literature, which make them only semi-automatic. This study proposes a novel overlapped fingerprint mask segmentation approach, thereby filling that gap in the development of fully automated fingerprint separation solutions. The proposed method uses convolutional neural networks to classify image blocks into three classes - background, single region, and overlapped region. The proposed approach shows satisfactory performance on three different datasets and opens the door for full automation of fingerprint separation algorithms, which is a very promising research area.
机译:重叠的指纹可能会出现在一些民事申请和刑事调查中。重叠指纹的分割是指纹分离和后续验证过程中的必需步骤。重叠的指纹分割是在文献中所有重叠的潜在指纹分离方法中手动执行的(因此,需要手工绘制的蒙版是必需的附加输入),这使它们仅是半自动的。这项研究提出了一种新颖的重叠指纹掩模分割方法,从而填补了全自动指纹分离解决方案开发中的空白。所提出的方法使用卷积神经网络将图像块分为三类:背景,单个区域和重叠区域。所提出的方法在三个不同的数据集上表现出令人满意的性能,并为指纹分离算法的完全自动化打开了大门,这是一个非常有前途的研究领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号