首页> 外文期刊>IET Cyber-Physical Systems: Theory & Applications >Biologically inspired adaptive intelligent secondary control for MGs under cyber imperfections
【24h】

Biologically inspired adaptive intelligent secondary control for MGs under cyber imperfections

机译:Cyber​​缺陷下的MGS的生物学启发适应性智能二次控制

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors investigate the secondary control of microgrids (MGs) in the presence of cyber imperfections such as delay and/or noise, and system disturbances. The existence of cyber imperfections and disturbance could bring in system uncertainty that will seriously degrade the effectiveness of most existing secondary control such as proportional-integral-derivative (PID), etc. To tackle these issues, a biologically-inspired reinforcement learning technique has been proposed which adjusts its parameters to the perturbed system setpoints generated by the cyber imperfections and system disturbances. The learning capability and low computational complexity of the proposed controller make it a promising approach to take cyber imperfections and system disturbances into account, where traditional control methodologies are not suitable due to their vulnerability to the cyber imperfections. First, an emotional learning-based secondary control structure is proposed, where the impacts of cyber imperfection and disturbance have been captured efficiently. Then, the real-time update laws are developed for generating the proper emotional signals (ESs) to stabilize the frequency and voltage. Ultimately, using the generated ESs, the secondary control of MGs is achieved. The Lyapunov analysis has been provided to prove the stability of the proposed design. Moreover, MATLAB/Simulink-based simulations demonstrate the effectiveness of the proposed algorithm.
机译:在本研究中,作者研究了在诸如延迟和/或噪声的网络缺陷的存在中的微电网(MGS)的二次控制,以及系统干扰。网络缺陷和干扰的存在可以带来系统不确定性,这将严重降低大多数现有的二级控制的有效性,例如比例 - 积分 - 衍生物(PID)等来解决这些问题,一种生物学激励的增强学习技术已经存在建议将其参数调整为网络缺陷和系统干扰产生的扰动系统设定值。所提出的控制器的学习能力和低计算复杂性使其成为将网络缺陷和系统紊乱考虑在内的有希望的方法,其中传统的控制方法由于它们对网络缺陷的脆弱性而不适合。首先,提出了一种基于情绪的次要控制结构,其中有效地捕获了网络缺陷和干扰的影响。然后,开发了实时更新法律,用于生成适当的情绪信号(ESS)以稳定频率和电压。最终,使用生成的ESS,实现了MGS的二次控制。已经提供了Lyapunov分析来证明拟议设计的稳定性。此外,基于Matlab / Simulink的仿真证明了所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号