首页> 外文期刊>IEICE Transactions on Information and Systems >A Computational Model for Taxonomy-Based Word Learning Inspired by Infant Developmental Word Acquisition
【24h】

A Computational Model for Taxonomy-Based Word Learning Inspired by Infant Developmental Word Acquisition

机译:基于分类学的单词学习的计算模型,受婴儿发育单词习得的启发

获取原文
获取原文并翻译 | 示例

摘要

To develop human interfaces such as home information equipment, highly capable word learning ability is required. In particular, in order to realize user-customized and situation-dependent interaction using language, a function is needed that can build new categories online in response to presented objects for an advanced human interface. However, at present, there are few basic studies focusing on the purpose of language acquisition with category formation. In this study, taking hints from an analogy between machine learning and infant developmental word acquisition, we propose a taxonomy-based word-learning model using a neural network. Through computer simulations, we show that our model can build categories and find the name of an object based on categorization.
机译:为了开发诸如家庭信息设备之类的人机界面,需要高能力的单词学习能力。尤其是,为了使用语言实现用户自定义和与情况有关的交互,需要一种功能,该功能可以响应高级对象人机界面的显示对象在线建立新类别。但是,目前很少有基础研究关注类别形成的语言习得目的。在这项研究中,从机器学习和婴儿发育单词习得之间的类比中获得暗示,我们提出了使用神经网络的基于分类法的单词学习模型。通过计算机模拟,我们证明了我们的模型可以建立类别并根据分类找到对象的名称。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号