首页> 外文期刊>電子情報通信学会技術研究報告 >Partially Symmetric Functions are Efficiently Isomorphism-Testable
【24h】

Partially Symmetric Functions are Efficiently Isomorphism-Testable

机译:部分对称函数可以有效地进行同构测试

获取原文
获取原文并翻译 | 示例

摘要

Given a function f : {0,1}~n → {0,1}, the f-isomorphism testing problem requires a randomized algorithm to distinguish functions that are identical to f up to relabeling of the input variables from functions that are far from being so. An important open question in property testing is to determine for which functions f we can test f-isomorphism with a constant number of queries. Despite much recent attention to this question, essentially only two classes of functions were known to be efficiently isomorphism testable: symmetric functions and juntas. We unify and extend these results by showing that all partially symmetric functions - functions invariant to the reordering of all but a constant number of their variables-are efficiently isomorphism-testable. This class of functions, first introduced by Shannon, includes symmetric functions, juntas, and many other functions as well. We conjecture that these functions are essentially the only functions efficiently isomorphism-testable. To prove our main result, we also show that partial symmetry is efficiently testable. In turn, to prove this result we had to revisit the junta testing problem. We provide a new proof of correctness of the nearly-optimal junta tester. Our new proof replaces the Fourier machinery of the original proof with a purely combinatorial argument that exploits the connection between sets of variables with low influence and intersecting families. Another important ingredient in our proofs is a new notion of symmetric influence. We use this measure of influence to prove that partial symmetry is efficiently testable and also to construct an efficient sample extractor for partially symmetric functions. We then combine the sample extractor with the testing-by-implicit-learning approach to complete the proof that partially symmetric functions are efficiently isomorphism-testable.
机译:给定一个函数f:{0,1}〜n→{0,1},f同构测试问题需要一个随机算法来区分与f相同的函数,直到将输入变量重新标记为是这样。属性测试中的一个重要的开放性问题是确定我们可以使用恒定数量的查询测试哪些函数f同构。尽管最近对该问题的关注度很高,但实际上只有两类函数可以有效地测试同构性:对称函数和juntas。我们通过显示所有部分对称的函数(除了恒定数量的变量之外的所有变量都不变的函数)可以有效地进行同构测试,来统一和扩展这些结果。香农首先引入的此类函数包括对称函数,juntas和许多其他函数。我们推测这些功能本质上是唯一可以有效进行同构测试的功能。为了证明我们的主要结果,我们还证明了部分对称性是可有效测试的。反过来,为了证明这一结果,我们不得不重新审视junta测试问题。我们为近乎最优的junta测试仪提供了新的正确性证明。我们的新证明用纯粹的组合论证代替了原始证明的傅里叶机制,该论证利用了影响力低的变量集与相交的族之间的联系。我们证明中的另一个重要因素是对称影响的新概念。我们使用这种影响的量度来证明部分对称性是可有效测试的,并且还为部分对称函数构造了一个有效的样本提取器。然后,我们将样本提取器与隐式学习测试方法相结合,以完成证明部分对称函数可以有效地进行同构测试的证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号