首页> 外文期刊>電気学会論文誌. C >A Hybrid Learning Algorithm Integrating Genetic Algorithm with Neural Networks for Saccade Generation Model
【24h】

A Hybrid Learning Algorithm Integrating Genetic Algorithm with Neural Networks for Saccade Generation Model

机译:遗传算法与神经网络相结合的混合学习算法在扫视模型中的应用

获取原文
获取原文并翻译 | 示例

摘要

Saccade eye movements are among the most rapid yet precise of all movements produced by higher mammals. Recently we have proposed a spatio-temporal neural network model of the superior colliculus which uses lateral excitatory and inhibitory interconnections to help control both the dynamic and static behavior of saccadic eye movements. In this paper a new learning algorithm integrating genetic algorithms with neural networks for the lateral inhibitory and excitatory interconnections in the saccade generation model is presented.
机译:眼球运动是高等哺乳动物产生的所有运动中最快速但最精确的运动之一。最近,我们提出了上丘的时空神经网络模型,该模型使用横向兴奋性和抑制性互连来帮助控制眼跳运动的动态和静态行为。本文提出了一种新的学习算法,将遗传算法与神经网络相结合,用于扫视生成模型中的横向抑制和激励互连。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号