首页> 外文期刊>IEEE transactions on visualization and computer graphics >Toward a Quantitative Survey of Dimension Reduction Techniques
【24h】

Toward a Quantitative Survey of Dimension Reduction Techniques

机译:朝着尺寸减少技术的定量调查

获取原文
获取原文并翻译 | 示例

摘要

Dimensionality reduction methods, also known as projections, are frequently used in multidimensional data exploration in machine learning, data science, and information visualization. Tens of such techniques have been proposed, aiming to address a wide set of requirements, such as ability to show the high-dimensional data structure, distance or neighborhood preservation, computational scalability, stability to data noise and/or outliers, and practical ease of use. However, it is far from clear for practitioners how to choose the best technique for a given use context. We present a survey of a wide body of projection techniques that helps answering this question. For this, we characterize the input data space, projection techniques, and the quality of projections, by several quantitative metrics. We sample these three spaces according to these metrics, aiming at good coverage with bounded effort. We describe our measurements and outline observed dependencies of the measured variables. Based on these results, we draw several conclusions that help comparing projection techniques, explain their results for different types of data, and ultimately help practitioners when choosing a projection for a given context. Our methodology, datasets, projection implementations, metrics, visualizations, and results are publicly open, so interested stakeholders can examine and/or extend this benchmark.
机译:维数减少方法,也称为预测,经常用于机器学习,数据科学和信息可视化中的多维数据探索。已经提出了数十种这样的技术,旨在解决广泛的要求,例如显示高维数据结构,距离或距离保存,计算可扩展性,数据噪声和/或异常值的能力,以及实际易于实现用。但是,对于从业者来说,远远甚至如何选择用于给定使用上下文的最佳技术。我们对一项宽的投影技术进行了调查,有助于回答这个问题。为此,我们通过若干定量度量表征输入数据空间,投影技术和投影质量。我们根据这些指标来对这三个空格进行采样,旨在通过有界努力的良好覆盖。我们描述了我们的测量和概述了测量变量的依赖关系。基于这些结果,我们得出了几个结论,帮助比较投影技术,向不同类型的数据解释它们的结果,并最终在为特定上下文选择投影时帮助从业者。我们的方法,数据集,投影实现,指标,可视化和结果是公开开放的,所以有兴趣的利益相关者可以检查和/或扩展该基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号