首页> 外文期刊>IEEE transactions on visualization and computer graphics >Synthesizing Camera Noise Using Generative Adversarial Networks
【24h】

Synthesizing Camera Noise Using Generative Adversarial Networks

机译:使用生成的对抗网络合成相机噪声

获取原文
获取原文并翻译 | 示例

摘要

We present a technique for synthesizing realistic noise for digital photographs. It can adjust the noise level of an input photograph, either increasing or decreasing it, to match a target ISO level. Our solution learns the mappings among different ISO levels from unpaired data using generative adversarial networks. We demonstrate its effectiveness both quantitatively, using Kullback-Leibler divergence and Kolmogorov-Smirnov test, and qualitatively through a large number of examples. We also demonstrate its practical applicability by using its results to significantly improve the performance of a state-of-the-art trainable denoising method. Our technique should benefit several computer-vision applications that seek robustness to noisy scenarios.
机译:我们介绍了一种用于综合数字照片的现实噪声的技术。它可以调整输入照片的噪声水平,响起或减少它,以匹配目标ISO级别。我们的解决方案使用生成的对抗网络从未配对数据学习映射。我们通过大量的示例,使用Kullback-Leibler发散和Kolmogorov-Smirnov测试来展示其有效性。我们还通过使用其结果显着提高了最先进的培训去噪方法的性能来展示其实际适用性。我们的技术应使多种计算机视觉应用程序有利于寻求嘈杂情景的鲁棒性的计算机视觉应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号