首页> 外文期刊>IEEE transactions on visualization and computer graphics >Graph-Based Feature-Preserving Mesh Normal Filtering
【24h】

Graph-Based Feature-Preserving Mesh Normal Filtering

机译:基于图形的特征​​保留网格普通滤波

获取原文
获取原文并翻译 | 示例

摘要

Distinguishing between geometric features and noise is of paramount importance for mesh denoising. In this paper, a graph-based feature-preserving mesh normal filtering scheme is proposed, which includes two stages: graph-based feature detection and feature-aware guided normal filtering. In the first stage, faces in the input noisy mesh are represented by patches, which are then modelled as weighted graphs. In this way, feature detection can be cast as a graph-cut problem. Subsequently, an iterative normalized cut algorithm is applied on each patch to separate the patch into smooth regions according to the detected features. In the second stage, a feature-aware guidance normal is constructed for each face, and guided normal filtering is applied to achieve robust feature-preserving mesh denoising. The results of experiments on synthetic and real scanned models indicate that the proposed scheme outperforms state-of-the-art mesh denoising works in terms of both objective and subjective evaluations.
机译:区分几何特征和噪声对于网格去噪至至关重要。在本文中,提出了一种基于图形的特征​​保护网格普通滤波方案,其包括两个阶段:基于图形的特征​​检测和特征感知导向普通滤波。在第一阶段,输入噪声网格中的面由修补程序表示,然后将其建模为加权图。以这种方式,特征检测可以作为图形切割问题。随后,在每个贴片上施加迭代归一化切割算法,以根据检测到的特征将贴片分离为平滑区域。在第二阶段,为每个面构造一个特征感知指导正常,并应用引导的正常滤波来实现鲁棒特征保存网格去噪。合成和真实扫描模型的实验结果表明,在目标和主观评估方面,所提出的方案优于最先进的网眼去噪工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号