首页> 外文期刊>IEEE transactions on visualization and computer graphics >Applications of Forman's discrete Morse theory to topology visualization and mesh compression
【24h】

Applications of Forman's discrete Morse theory to topology visualization and mesh compression

机译:福尔曼离散莫尔斯理论在拓扑可视化和网格压缩中的应用

获取原文
获取原文并翻译 | 示例

摘要

Morse theory is a powerful tool for investigating the topology of smooth manifolds. It has been widely used by the computational topology, computer graphics, and geometric modeling communities to devise topology-based algorithms and data structures. Forman introduced a discrete version of this theory which is purely combinatorial. We aim to build, visualize, and apply the basic elements of Forman's discrete Morse theory. We intend to use some of those concepts to visually study the topology of an object. As a basis, an algorithmic construction of optimal Forman's discrete gradient vector fields is provided. This construction is then used to topologically analyze mesh compression schemes, such as Edgebreaker and Grow&Fold. In particular, we prove that the complexity class of the strategy optimization of Grow&Fold is MAX-SNP hard.
机译:莫尔斯理论是研究光滑流形拓扑的有力工具。它已被计算拓扑,计算机图形学和几何建模社区广泛用于设计基于拓扑的算法和数据结构。福尔曼介绍了该理论的离散版本,它是纯粹组合的。我们旨在构建,可视化和应用Forman离散莫尔斯理论的基本要素。我们打算使用其中一些概念来直观地研究对象的拓扑。作为基础,提供了最佳Forman离散梯度矢量场的算法构造。然后,此结构用于拓扑分析网格压缩方案,例如Edgebreaker和Grow&Fold。特别是,我们证明了Grow&Fold策略优化的复杂度类别很难达到MAX-SNP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号