首页> 外文期刊>IEEE transactions on visualization and computer graphics >Brushing of Attribute Clouds for the Visualization of Multivariate Data
【24h】

Brushing of Attribute Clouds for the Visualization of Multivariate Data

机译:刷属性云以可视化多元数据

获取原文
获取原文并翻译 | 示例

摘要

The visualization and exploration of multivariate data is still a challenging task. Methods either try to visualize all variables simultaneously at each position using glyph-based approaches or use linked views for the interaction between attribute space and physical domain such as brushing of scatterplots. Most visualizations of the attribute space are either difficult to understand or suffer from visual clutter. We propose a transformation of the high-dimensional data in attribute space to 2D that results in a point cloud, called attribute cloud, such that points with similar multivariate attributes are located close to each other. The transformation is based on ideas from multivariate density estimation and manifold learning. The resulting attribute cloud is an easy to understand visualization of multivariate data in two dimensions. We explain several techniques to incorporate additional information into the attribute cloud, that help the user get a better understanding of multivariate data. Using different examples from fluid dynamics and climate simulation, we show how brushing can be used to explore the attribute cloud and find interesting structures in physical space.
机译:多元数据的可视化和探索仍然是一项艰巨的任务。方法要么尝试使用基于字形的方法来同时可视化每个位置的所有变量,要么使用链接的视图进行属性空间与物理域之间的交互,例如散点图的绘制。属性空间的大多数可视化要么难以理解,要么视觉混乱。我们建议将属性空间中的高维数据转换为2D,从而生成一个点云,称为属性云,以使具有相似多元属性的点彼此靠近。该转换基于多元密度估计和流形学习的思想。由此产生的属性云是一个易于理解的二维多维数据可视化。我们介绍了几种将附加信息合并到属性云中的技术,这些技术可帮助用户更好地理解多元数据。使用来自流体动力学和气候模拟的不同示例,我们展示了如何使用笔刷来探索属性云并在物理空间中找到有趣的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号