首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Sampling and Visualizing Creases with Scale-Space Particles
【24h】

Sampling and Visualizing Creases with Scale-Space Particles

机译:使用比例空间粒子对折痕进行采样和可视化

获取原文
获取原文并翻译 | 示例

摘要

Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys, as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers an n-D image as an (n + 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI.
机译:作为一种对隐式曲面和分段对象进行采样以改善网格生成和形状分析的方法,粒子系统已变得越来越重要。我们提出,粒子系统在从非分段数据中采样结构中具有明显更普遍的作用。我们描述了一个粒子系统,该系统可以计算出可有效代表扫描医学数据中许多解剖结构的折痕特征(即脊和谷,为线或面)的采样。由于结构自然存在于相对于图像分辨率的大小范围内,因此计算机视觉发展了比例空间理论,该理论将n-D图像视为处于不同模糊级别的(n +1)-D图像堆栈。我们的尺度空间粒子根据折痕特征施加的空间约束,将粒子吸引到最大特征强度的尺度的粒子图像能量以及控制采样密度的粒子间能量,在连续的四维尺度空间中移动。空间和规模。为了使比例空间对于大型三维数据切实可行,我们在最佳选择的比例下从少量预先计算的模糊中呈现了基于比例的基于样条的插值。使用张量字形可视化粒子系统的配置,该张量字形显示有关图像的局部Hessian和粒子比例的信息。我们使用尺度空间粒子来采样肺部CT中气道的复杂三维分支结构,以及脑DTI中的主要白质结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号