首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Voronoi-Based Curvature and Feature Estimation from Point Clouds
【24h】

Voronoi-Based Curvature and Feature Estimation from Point Clouds

机译:基于Voronoi的点云曲率和特征估计

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.
机译:我们提出了一种有效且鲁棒的方法,用于从统一框架中的点云采样中提取分段光滑表面的曲率信息,尖锐特征和法线方向。我们的方法本质上是不可或缺的,并且使用了点云Voronoi细胞的卷积协方差矩阵,这在存在噪声的情况下证明了其鲁棒性。我们表明,这些矩阵包含与曲面平滑部分中的曲率有关的信息,以及与围绕分段平滑表面特征的尖锐边缘的方向和角度有关的信息。我们的方法适用于二维和三维,并且可以轻松并行化,从而可以处理任意大的点云,这对于基于Voronoi的方法是一个挑战。另外,我们描述了该方法的蒙特卡洛版本,该版本适用于任何维度。在各种模型上存在变化的噪声水平和采样密度的情况下,我们说明了主曲率信息和特征提取的正确性。作为示例应用程序,我们使用我们的特征检测方法来分割分段光滑表面的点云采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号