首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data
【24h】

Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data

机译:高维数据交互式视觉分析的代表性因子生成

获取原文
获取原文并翻译 | 示例

摘要

Datasets with a large number of dimensions per data item (hundreds or more) are challenging both for computational and visual analysis. Moreover, these dimensions have different characteristics and relations that result in sub-groups and/or hierarchies over the set of dimensions. Such structures lead to heterogeneity within the dimensions. Although the consideration of these structures is crucial for the analysis, most of the available analysis methods discard the heterogeneous relations among the dimensions. In this paper, we introduce the construction and utilization of representative factors for the interactive visual analysis of structures in high-dimensional datasets. First, we present a selection of methods to investigate the sub-groups in the dimension set and associate representative factors with those groups of dimensions. Second, we introduce how these factors are included in the interactive visual analysis cycle together with the original dimensions. We then provide the steps of an analytical procedure that iteratively analyzes the datasets through the use of representative factors. We discuss how our methods improve the reliability and interpretability of the analysis process by enabling more informed selections of computational tools. Finally, we demonstrate our techniques on the analysis of brain imaging study results that are performed over a large group of subjects.
机译:每个数据项具有大量维(数百个或更多)的数据集对于计算和视觉分析都具有挑战性。此外,这些维度具有不同的特征和关系,这些特征和关系导致整个维度集上的子组和/或层次结构。这样的结构导致尺寸内的异质性。尽管考虑这些结构对于分析至关重要,但是大多数可用的分析方法都放弃了尺寸之间的异类关系。在本文中,我们介绍了用于高维数据集中结构的交互式视觉分析的代表性因素的构建和利用。首先,我们提供了一些方法来调查维集中的子组,并将代表因素与这些维组相关联。其次,我们介绍这些因素以及原始尺寸如何包含在交互式视觉分析周期中。然后,我们提供了一个分析过程的步骤,该过程通过使用代表性因子来迭代地分析数据集。我们讨论了我们的方法如何通过启用更明智的计算工具选择来提高分析过程的可靠性和可解释性。最后,我们展示了我们在大量对象上进行的脑成像研究结果分析的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号