首页> 外文期刊>IEEE transactions on visualization and computer graphics >Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles
【24h】

Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles

机译:等高线框图:一种从仿真合奏表征特征集中不确定性的方法

获取原文
获取原文并翻译 | 示例

摘要

Ensembles of numerical simulations are used in a variety of applications, such as meteorology or computational solid mechanics, in order to quantify the uncertainty or possible error in a model or simulation. Deriving robust statistics and visualizing the variability of an ensemble is a challenging task and is usually accomplished through direct visualization of ensemble members or by providing aggregate representations such as an average or pointwise probabilities. In many cases, the interesting quantities in a simulation are not dense fields, but are sets of features that are often represented as thresholds on physical or derived quantities. In this paper, we introduce a generalization of boxplots, called contour boxplots, for visualization and exploration of ensembles of contours or level sets of functions. Conventional boxplots have been widely used as an exploratory or communicative tool for data analysis, and they typically show the median, mean, confidence intervals, and outliers of a population. The proposed contour boxplots are a generalization of functional boxplots, which build on the notion of data depth. Data depth approximates the extent to which a particular sample is centrally located within its density function. This produces a center-outward ordering that gives rise to the statistical quantities that are essential to boxplots. Here we present a generalization of functional data depth to contours and demonstrate methods for displaying the resulting boxplots for two-dimensional simulation data in weather forecasting and computational fluid dynamics.
机译:数值模拟的集合用于各种应用中,例如气象学或计算机固体力学,以便量化模型或模拟中的不确定性或可能的误差。得出可靠的统计数据并可视化集合的可变性是一项艰巨的任务,通常是通过直接可视化集合成员或通过提供诸如平均或逐点概率之类的汇总表示来完成的。在许多情况下,模拟中有趣的数量不是密集的字段,而是通常表示为物理量或派生量阈值的特征集。在本文中,我们介绍了箱形图的一般化,称为轮廓箱形图,用于可视化和探索轮廓或功能水平集的集合。传统的箱形图已被广泛用作数据分析的探索性工具或交流工具,它们通常显示总体的中位数,均值,置信区间和离群值。拟议的轮廓箱图是功能箱图的概括,它基于数据深度的概念。数据深度近似于特定样本在其密度函数内居中定位的程度。这将产生从中心向外的排序,从而产生了对箱图必不可少的统计量。在这里,我们对轮廓的功能数据深度进行了概括,并演示了在天气预报和计算流体动力学中显示二维模拟数据结果箱形图的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号