首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time
【24h】

Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time

机译:梳理通信毛线:使用逻辑时间可视化并行执行轨迹

获取原文
获取原文并翻译 | 示例

摘要

With the continuous rise in complexity of modern supercomputers, optimizing the performance of large-scale parallel programs is becoming increasingly challenging. Simultaneously, the growth in scale magnifies the impact of even minor inefficiencies – potentially millions of compute hours and megawatts in power consumption can be wasted on avoidable mistakes or sub-optimal algorithms. This makes performance analysis and optimization critical elements in the software development process. One of the most common forms of performance analysis is to study execution traces, which record a history of per-process events and interprocess messages in a parallel application. Trace visualizations allow users to browse this event history and search for insights into the observed performance behavior. However, current visualizations are difficult to understand even for small process counts and do not scale gracefully beyond a few hundred processes. Organizing events in time leads to a virtually unintelligible conglomerate of interleaved events and moderately high process counts overtax even the largest display. As an alternative, we present a new trace visualization approach based on transforming the event history into logical time inferred directly from happened-before relationships. This emphasizes the code's structural behavior, which is much more familiar to the application developer. The original timing data, or other information, is then encoded through color, leading to a more intuitive visualization. Furthermore, we use the discrete nature of logical timelines to cluster processes according to their local behavior leading to a scalable visualization of even long traces on large process counts. We demonstrate our system using two case studies on large-scale parallel codes.
机译:随着现代超级计算机复杂性的不断提高,优化大型并行程序的性能变得越来越具有挑战性。同时,规模的增长甚至会放大效率低下的影响,因为可避免的错误或次优算法可能会浪费数百万个计算小时和数兆瓦的功耗。这使性能分析和优化成为软件开发过程中的关键要素。性能分析的最常见形式之一是研究执行跟踪,该跟踪记录并行应用程序中每个进程事件和进程间消息的历史记录。跟踪可视化使用户可以浏览此事件历史记录并搜索对观察到的性能行为的见解。但是,即使对于很少的过程计数,当前的可视化效果也难以理解,并且不能很好地扩展到数百个过程之外。及时组织事件会导致交错事件几乎无法理解,并且即使是最大的显示,中等数量的过程计数也会使系统负担沉重。作为替代方案,我们提出了一种新的跟踪可视化方法,该方法基于将事件历史记录转换为直接从事前关系中推断出的逻辑时间。这强调了代码的结构行为,这对于应用程序开发人员来说是更为熟悉的。然后通过颜色对原始时序数据或其他信息进行编码,从而实现更直观的可视化。此外,我们使用逻辑时间线的离散特性根据流程的本地行为对流程进行聚类,从而可以对大型流程计数上的较长轨迹进行可扩展的可视化。我们使用两个大规模并行代码案例研究来演示我们的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号