【24h】

Distributed Seams for Gigapixel Panoramas

机译:千兆像素全景的分布式接缝

获取原文
获取原文并翻译 | 示例

摘要

Gigapixel panoramas are an increasingly popular digital image application. They are often created as a mosaic of many smaller images. The mosaic acquisition can take many hours causing the individual images to differ in exposure and lighting conditions. A blending operation is often necessary to give the appearance of a seamless image. The blending quality depends on the magnitude of discontinuity along the image boundaries. Often, new boundaries, or seams, are first computed that minimize this transition. Current techniques based on multi-labeling Graph Cuts are too slow and memory intensive for gigapixel sized panoramas. In this paper, we present a parallel, out-of-core seam computing technique that is fast, has small memory footprint, and is capable of running efficiently on different types of parallel systems. Its maximum memory usage is configurable, in the form of a cache, which can improve performance by reducing redundant disk I/O and computations. It shows near-perfect scaling on symmetric multiprocessing systems and good scaling on clusters and distributed shared memory systems. Our technique improves the time required to compute seams for gigapixel imagery from many hours (or even days) to just a few minutes, while still producing boundaries with energy that is on-par with Graph Cuts.
机译:十亿像素全景图是一种越来越流行的数字图像应用程序。它们通常是由许多较小的图像组成的。马赛克采集可能需要花费很多时间,导致各个图像的曝光和光照条件有所不同。通常需要进行混合操作以产生无缝图像的外观。混合质量取决于沿图像边界的不连续程度。通常,首先会计算新的边界或接缝以最小化此过渡。对于千兆像素大小的全景图,基于多标签“图形剪切”的当前技术太慢且占用大量内存。在本文中,我们提出了一种并行,核心外的接缝计算技术,该技术速度快,内存占用量小并且能够在不同类型的并行系统上高效运行。它的最大内存使用量可以缓存形式进行配置,可以通过减少冗余磁盘I / O和计算来提高性能。它显示了在对称多处理系统上几乎完美的扩展,在集群和分布式共享内存系统上具有良好的扩展。我们的技术将计算千兆像素图像接缝所需的时间从很多小时(甚至几天)缩短到了几分钟,同时仍产生了与Graph Cut相当的能量边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号