首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Gaze Stripes: Image-Based Visualization of Eye Tracking Data
【24h】

Gaze Stripes: Image-Based Visualization of Eye Tracking Data

机译:凝视条纹:基于图像的眼动数据可视化

获取原文
获取原文并翻译 | 示例

摘要

We present a new visualization approach for displaying eye tracking data from multiple participants. We aim to show the spatio-temporal data of the gaze points in the context of the underlying image or video stimulus without occlusion. Our technique, denoted as gaze stripes, does not require the explicit definition of areas of interest but directly uses the image data around the gaze points, similar to thumbnails for images. A gaze stripe consists of a sequence of such gaze point images, oriented along a horizontal timeline. By displaying multiple aligned gaze stripes, it is possible to analyze and compare the viewing behavior of the participants over time. Since the analysis is carried out directly on the image data, expensive post-processing or manual annotation are not required. Therefore, not only patterns and outliers in the participants' scanpaths can be detected, but the context of the stimulus is available as well. Furthermore, our approach is especially well suited for dynamic stimuli due to the non-aggregated temporal mapping. Complementary views, i.e., markers, notes, screenshots, histograms, and results from automatic clustering, can be added to the visualization to display analysis results. We illustrate the usefulness of our technique on static and dynamic stimuli. Furthermore, we discuss the limitations and scalability of our approach in comparison to established visualization techniques.
机译:我们提出了一种新的可视化方法,用于显示来自多个参与者的眼睛跟踪数据。我们旨在在不遮挡的情况下,在基础图像或视频刺激的背景下显示凝视点的时空数据。我们的技术称为注视条纹,不需要明确定义关注区域,而是直接使用注视点周围的图像数据,类似于图像的缩略图。凝视条纹由沿着水平时间线定向的一系列此类凝视点图像组成。通过显示多个对齐的凝视条纹,可以分析和比较参与者随时间的观看行为。由于直接对图像数据进行分析,因此不需要昂贵的后处理或手动注释。因此,不仅可以检测到参与者扫描路径中的模式和异常值,而且还可以使用刺激的上下文。此外,由于非聚合的时间映射,我们的方法特别适合于动态刺激。可以将补充视图(即标记,注释,屏幕截图,直方图和自动聚类的结果)添加到可视化中以显示分析结果。我们说明了我们的技术对静态和动态刺激的有用性。此外,与已建立的可视化技术相比,我们讨论了我们方法的局限性和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号