首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >Isosurface Visualization of Data with Nonparametric Models for Uncertainty
【24h】

Isosurface Visualization of Data with Nonparametric Models for Uncertainty

机译:使用非参数模型进行数据的等值面可视化

获取原文
获取原文并翻译 | 示例

摘要

The problem of isosurface extraction in uncertain data is an important research problem and may be approached in two ways. One can extract statistics (e.g., mean) from uncertain data points and visualize the extracted field. Alternatively, data uncertainty, characterized by probability distributions, can be propagated through the isosurface extraction process. We analyze the impact of data uncertainty on topology and geometry extraction algorithms. A novel, edge-crossing probability based approach is proposed to predict underlying isosurface topology for uncertain data. We derive a probabilistic version of the midpoint decider that resolves ambiguities that arise in identifying topological configurations. Moreover, the probability density function characterizing positional uncertainty in isosurfaces is derived analytically for a broad class of nonparametric distributions. This analytic characterization can be used for efficient closed-form computation of the expected value and variation in geometry. Our experiments show the computational advantages of our analytic approach over Monte-Carlo sampling for characterizing positional uncertainty. We also show the advantage of modeling underlying error densities in a nonparametric statistical framework as opposed to a parametric statistical framework through our experiments on ensemble datasets and uncertain scalar fields.
机译:不确定数据中的等值面提取问题是一个重要的研究问题,可以通过两种方式解决。可以从不确定的数据点中提取统计数据(例如平均值),并可视化提取的字段。或者,可以通过等值面提取过程传播以概率分布为特征的数据不确定性。我们分析了数据不确定性对拓扑和几何提取算法的影响。提出了一种基于概率的新颖方法来预测不确定数据的基本等值面拓扑。我们推导了中点决策器的概率版本,该版本解决了识别拓扑配置时出现的歧义。此外,对于一大类非参数分布,可以解析得出表征等值面中位置不确定性的概率密度函数。这种分析特性可用于有效地对期望值和几何形状变化进行闭式计算。我们的实验表明,相对于蒙特卡洛采样,我们的分析方法在表征位置不确定性方面具有计算优势。通过在整体数据集和不确定标量字段上进行的实验,我们还展示了在非参数统计框架中对基本误差密度建模的优势,而不是参数统计框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号