首页> 外文期刊>IEEE transactions on visualization and computer graphics >Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations
【24h】

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

机译:数据可视化显着性模型:一种评估抽象数据可视化的工具

获取原文
获取原文并翻译 | 示例

摘要

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.
机译:评估数据可视化效果的有效性是一项具有挑战性的工作,并且通常依赖于一次性研究,该研究在一项特定任务的背景下测试可视化效果。数据科学,可视化和人机交互领域的研究人员正在呼吁基础工具和原理,这些工具和原理可用于以更快,更通用的方式评估数据可视化的有效性。这种工具的一种可能性是用于数据可视化的视觉显着性模型。视觉显着性模型通常基于人类视觉皮层的属性,并预测场景的哪些区域具有可能吸引观看者注意力的视觉特征(例如颜色,亮度,边缘)。尽管这些模型可以准确地预测观众在自然场景中的视线,但通常对于抽象数据可视化效果不佳。在本文中,我们讨论了将现有显着性模型应用于数据可视化时性能不佳的原因。我们引入了数据可视化显着性(DVS)模型,该模型是为解决这些弱点而专门设计的,并且我们通过比较模型产生的显着性图与从中获得的眼睛跟踪数据,来测试DVS模型和现有显着性模型的性能。观众。最后,我们描述了如何将修改后的显着性模型用作评估可视化效果的通用工具,包括该方法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号