首页> 外文期刊>IEEE transactions on visualization and computer graphics >An Intelligent System Approach for Probabilistic Volume Rendering Using Hierarchical 3D Convolutional Sparse Coding
【24h】

An Intelligent System Approach for Probabilistic Volume Rendering Using Hierarchical 3D Convolutional Sparse Coding

机译:使用分层3D卷积稀疏编码的概率体绘制的智能系统方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel machine learning-based voxel classification method for highly-accurate volume rendering. Unlike conventional voxel classification methods that incorporate intensity-based features, the proposed method employs dictionary based features learned directly from the input data using hierarchical multi-scale 3D convolutional sparse coding, a novel extension of the state-of-the-art learning-based sparse feature representation method. The proposed approach automatically generates high-dimensional feature vectors in up to 75 dimensions, which are then fed into an intelligent system built on a random forest classifier for accurately classifying voxels from only a handful of selection scribbles made directly on the input data by the user. We apply the probabilistic transfer function to further customize and refine the rendered result. The proposed method is more intuitive to use and more robust to noise in comparison with conventional intensity-based classification methods. We evaluate the proposed method using several synthetic and real-world volume datasets, and demonstrate the methods usability through a user study.
机译:在本文中,我们提出了一种新颖的基于机器学习的体素分类方法,用于高精度的体绘制。与传统的体素分类方法结合了基于强度的特征不同,该方法采用了基于字典的特征,这些特征是使用分层的多尺度3D卷积稀疏编码从输入数据中直接学习的,这是基于现有技术的最新扩展稀疏特征表示方法。所提出的方法会自动生成多达75个维度的高维特征向量,然后将其输入到基于随机森林分类器的智能系统中,以仅根据用户直接在输入数据上进行的少数选择杂文来准确分类体素。我们应用概率传递函数进一步定制和完善渲染结果。与常规的基于强度的分类方法相比,所提出的方法使用起来更直观并且对噪声更鲁棒。我们使用几个合成的和真实的体积数据集评估了所提出的方法,并通过用户研究证明了该方法的可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号