首页> 外文期刊>IEEE transactions on visualization and computer graphics >SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
【24h】

SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

机译: SparseLeap :用于大型体积渲染的有效空白空间跳过

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.
机译:数据采集​​的最新进展产生了非常高分辨率和大尺寸的体数据,例如TB级的显微镜体。这些数据通常包含许多精细而复杂的结构,这给体积渲染带来了巨大挑战,因此有效跳过空白空间尤为重要。本文解决了两个主要挑战:(1)包含精细结构的大体积的复杂性经常导致高度细分的空间细分,这使得空白区域难以有效跳过。 (2)将空间分为空区域和非空区域的方法经常更改,因为用户或交互式查询的评估会激活一组不同的对象,这使得无法预先计算出适应性好的空间细分。我们描述了新颖的SparseLeap方法,即使在精细结构周围也可以有效地跳过很大的空间。 SparseLeap的主要性能特征是,它将跳过空白空间的主要成本移出了射线投射阶段。我们通过一种混合策略来实现此目的,该策略平衡了在光栅化(对象顺序)阶段确定空射线段与在射线投射(图像顺序)阶段采样非空体积数据之间的计算负荷。在进行光线投射之前,我们利用GPU的快速硬件栅格化为每个像素创建光线分段列表,该列表确定了光线的非空区域。光线投射阶段然后跳过空白空间而没有层次遍历。射线段列表是通过光栅化一组与视图无关的细粒度边界框而创建的。通过重复使用相同的边界框来利用帧相干性,除非活动对象集发生更改。我们显示,与标准八叉树空白空间跳过相比,SparseLeap可以更好地缩放到大型稀疏数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号