首页> 外文期刊>IEEE transactions on visualization and computer graphics >: A Visual Analytics Framework for Interactive and Explainable Machine Learning
【24h】

: A Visual Analytics Framework for Interactive and Explainable Machine Learning

机译::用于交互式和可解释机器学习的可视化分析框架

获取原文
获取原文并翻译 | 示例

摘要

We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.
机译:我们提出了一种交互式且可解释的机器学习框架,该框架使用户能够(1)了解机器学习模型; (2)使用不同的可解释AI方法诊断模型局限性;以及(3)完善和优化模型。我们的框架将迭代的XAI管道与八个全局监视和指导机制结合在一起,包括质量监视,出处跟踪,模型比较和信任建立。为了使该框架可操作,我们提出了explAIner,这是一种用于交互式和可解释的机器学习的可视化分析系统,可在常用的TensorBoard环境中实例化建议管道的所有阶段。我们进行了由九名参与者组成的用户研究,这些参与者来自不同的专业知识水平,以检查他们对我们工作流程的看法并收集建议以填补我们的系统与框架之间的空白。评估证实,我们紧密集成的系统可导致知情的机器学习过程,同时揭示进一步扩展的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号