首页> 外文期刊>IEEE transactions on visualization and computer graphics >InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations
【24h】

InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations

机译:InSituNet:用于集成仿真参数空间探索的深度图像合成

获取原文
获取原文并翻译 | 示例

摘要

We propose InSituNet, a deep learning based surrogate model to support parameter space exploration for ensemble simulations that are visualized in situ. In situ visualization, generating visualizations at simulation time, is becoming prevalent in handling large-scale simulations because of the I/O and storage constraints. However, in situ visualization approaches limit the flexibility of post-hoc exploration because the raw simulation data are no longer available. Although multiple image-based approaches have been proposed to mitigate this limitation, those approaches lack the ability to explore the simulation parameters. Our approach allows flexible exploration of parameter space for large-scale ensemble simulations by taking advantage of the recent advances in deep learning. Specifically, we design InSituNet as a convolutional regression model to learn the mapping from the simulation and visualization parameters to the visualization results. With the trained model, users can generate new images for different simulation parameters under various visualization settings, which enables in-depth analysis of the underlying ensemble simulations. We demonstrate the effectiveness of InSituNet in combustion, cosmology, and ocean simulations through quantitative and qualitative evaluations.
机译:我们提出了InSituNet,这是一个基于深度学习的替代模型,可为在原位可视化的集成仿真提供参数空间探索支持。在现场可视化中,由于I / O和存储限制,在仿真时生成可视化在处理大规模仿真中变得越来越普遍。但是,原地可视化方法限制了事后勘探的灵活性,因为原始的模拟数据不再可用。尽管已提出了多种基于图像的方法来减轻此限制,但这些方法缺乏探索仿真参数的能力。我们的方法通过利用深度学习的最新进展,可以灵活地探索大型集成仿真的参数空间。具体来说,我们将InSituNet设计为卷积回归模型,以学习从模拟和可视化参数到可视化结果的映射。使用训练有素的模型,用户可以在各种可视化设置下为不同的模拟参数生成新图像,从而可以对基础整体模拟进行深入分析。我们通过定量和定性评估证明InSituNet在燃烧,宇宙学和海洋模拟中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号