首页> 外文期刊>Vehicular Technology, IEEE Transactions on >A Novel TOA-Based Mobile Localization Technique Under Mixed LOS/NLOS Conditions for Cellular Networks
【24h】

A Novel TOA-Based Mobile Localization Technique Under Mixed LOS/NLOS Conditions for Cellular Networks

机译:混合LOS / NLOS条件下蜂窝网络中一种基于TOA的新型移动定位技术

获取原文
获取原文并翻译 | 示例

摘要

The presence of a non-line-of-sight (NLOS) link between a base station (BS) and a mobile station (MS) in a cellular network is a major issue that limits the performance of the majority of time-of-arrival (TOA) localization methods. Due to blocking obstacles, a signal has to travel a longer distance to reach the other end of the communication link. Thus, the additional distance introduced by the presence of an NLOS link is usually modeled by a positive measurement bias. In contrast to most of relevant works that are either search based or iterative, in this paper, we propose a two-stage closed-form estimator to localize an MS by three BSs in cellular networks. We use a distance-dependent bias model to derive a range estimator as a first step. We then use trilateration to find an estimate of the MS position. To assess the performance of our technique, we derive the mean square error (MSE) of the estimator and numerically evaluate the Cramer-Rao lower bound (CRLB) as a benchmark. We investigate the performance of the proposed method under mixed line-of-sight/NLOS scenarios in four environments, ranging from a bad urban environment to a rural environment. The provided Monte Carlo simulations show that our technique performs, on average, closely with the CRLB and provides localization capability with an average error of approximately 21 m in the worst environment among the four environments.
机译:蜂窝网络中基站(BS)和移动台(MS)之间存在非视距(NLOS)链接是一个主要问题,它限制了大多数到达时间的性能(TOA)本地化方法。由于障碍物,信号必须传播更长的距离才能到达通信链路的另一端。因此,通常通过正测量偏差来模拟由于存在NLOS链路而引入的额外距离。与大多数基于搜索或迭代的相关工作相反,在本文中,我们提出了一种两阶段的闭式估计器,用于通过蜂窝网络中的三个BS来定位MS。第一步,我们使用与距离有关的偏差模型来得出距离估算器。然后,我们使用三边测量法找到MS位置的估算值。为了评估我们技术的性能,我们导出了估算器的均方误差(MSE),并以Cramer-Rao下界(CRLB)进行了数值评估,以此作为基准。我们研究了在从恶劣的城市环境到乡村环境的四种环境下,混合视线/ NLOS情景下所提出方法的性能。所提供的蒙特卡洛模拟表明,我们的技术在平均水平上与CRLB密切相关,并且在四种环境中最恶劣的环境中提供的定位能力平均误差约为21 m。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号