首页> 外文期刊>IEEE Transactions on Vehicular Technology >Proactive Radio Resource Optimization With Margin Prediction: A Data Mining Approach
【24h】

Proactive Radio Resource Optimization With Margin Prediction: A Data Mining Approach

机译:具有余量预测的主动无线电资源优化:一种数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Driven by the exponential surge on high data rate services, network operators are facing the challenges of how to enhance the capacity and optimize the coverage in a cost-efficient approach. However, traditional network optimization technologies passively adjust the network configurations based on network's congestion ratio, drop-off rate, coverage holes, etc., leading to suboptimum user experiences. Therefore, the objective of this paper is to optimize the network configurations by obtaining the accurate network status, user demand, and application request distribution based on the real-time data. The data mining technique is introduced to predict the resource margin based on historical measurement statistics. To explore the dynamic distribution of user demand and application request, a weighted k-nearest neighbors model is proposed to predict periodic characteristics of network traffics, denoting different temporal and spatial patterns of radio resource margins. In contrast to the traditional passive network optimization approaches, the radio resources can be reconfigured actively to meet the dynamic patterns of traffic loads by using the proposed optimization algorithm. Results prove that the proposed data mining model can capture the dynamics of traffic loads to optimize the traffic load balance and increase the efficiency of radio resource utilization using the network statistic data.
机译:在高数据速率服务呈指数级增长的驱动下,网络运营商面临着如何以经济高效的方式增强容量和优化覆盖范围的挑战。但是,传统的网络优化技术会根据网络的拥塞率,丢包率,覆盖漏洞等来被动地调整网络配置,从而导致用户体验欠佳。因此,本文的目的是通过基于实时数据获得准确的网络状态,用户需求和应用程序请求分布来优化网络配置。引入了数据挖掘技术,以基于历史测量统计数据来预测资源裕度。为了探索用户需求和应用程序请求的动态分布,提出了加权k最近邻模型来预测网络流量的周期性特征,表示无线电资源裕度的不同时空模式。与传统的无源网络优化方法相比,通过使用所提出的优化算法,可以积极地对无线电资源进行重新配置,以满足流量负载的动态模式。结果证明,所提出的数据挖掘模型可以利用网络统计数据捕获流量负载的动态信息,以优化流量负载平衡并提高无线资源利用效率。

著录项

  • 来源
    《IEEE Transactions on Vehicular Technology》 |2017年第10期|9050-9060|共11页
  • 作者单位

    Key Laboratory of Universal Wireless Communications Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China;

    Key Laboratory of Universal Wireless Communications Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China;

    Key Laboratory of Universal Wireless Communications Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China;

    Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optimization; Data mining; Dynamic scheduling; Load modeling; Vehicle dynamics; Cellular networks; Time series analysis;

    机译:优化;数据挖掘;动态调度;负荷建模;车辆动力学;蜂窝网络;时间序列分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号