首页> 外文期刊>IEEE Transactions on Vehicular Technology >Interference Mitigation Based on Bayesian Compressive Sensing for Wireless Localization Systems in Unlicensed Band
【24h】

Interference Mitigation Based on Bayesian Compressive Sensing for Wireless Localization Systems in Unlicensed Band

机译:基于贝叶斯压缩感知的免许可频段无线定位系统的干扰缓解

获取原文
获取原文并翻译 | 示例

摘要

In wireless localization services, a wideband spectrum is required for high resolution ranging. For this purpose, unlicensed bands have received substantial interest for their potential to reduce deployment cost. However, in the unlicensed spectrum, narrowband interference is often present and distorts band-limited reference signals for channel impulse response (CIR) estimation that is a key component to determine the location of users. In this paper, we propose a new Bayesian compressive sensing (BCS) framework to estimate complex-valued targets and apply it to mitigate the impact of subband interference on CIR estimation accuracy. Our Bayesian approach estimates the CIR by maximizing the posterior probability of the CIR from frequency domain signals in which a portion of the signal is corrupted by the interference. Based on the BCS framework, we propose three interference mitigation techniques that utilize the information on interfered subbands differently. We demonstrate the superior performance of the proposed schemes by showing improved ranging error statistics using measured indoor channels in the 5.8 GHz band.
机译:在无线定位服务中,高分辨率频谱需要宽带频谱。为此,无执照频段因其降低部署成本的潜力而备受关注。但是,在未经许可的频谱中,经常会出现窄带干扰,并且会限制用于信道脉冲响应(CIR)估计的带宽受限参考信号,这是确定用户位置的关键组成部分。在本文中,我们提出了一种新的贝叶斯压缩感知(BCS)框架来估计复杂值目标,并将其应用于减轻子带干扰对CIR估计精度的影响。我们的贝叶斯方法通过最大化频域信号中CIR的后验概率来估计CIR,其中信号的一部分被干扰破坏了。基于BCS框架,我们提出了三种缓解干扰的技术,这些技术不同地利用了受干扰子带上的信息。通过使用5.8 GHz频段的室内测量信道显示改进的测距误差统计数据,我们证明了所提出方案的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号