首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >A distributed probabilistic system for adaptive regulation of image processing parameters
【24h】

A distributed probabilistic system for adaptive regulation of image processing parameters

机译:用于图像处理参数自适应调节的分布式概率系统

获取原文
获取原文并翻译 | 示例

摘要

A distributed optimization framework and its application to the regulation of the behavior of a network of interacting image processing algorithms are presented. The algorithm parameters used to regulate information extraction are explicitly represented as state variables associated with all network nodes. Nodes are also provided with message-passing procedures to represent dependences between parameter settings at adjacent levels. The regulation problem is defined as a joint-probability maximization of a conditional probabilistic measure evaluated over the space of possible configurations of the whole set of state variables (i.e., parameters). The global optimization problem is partitioned and solved in a distributed way, by considering local probabilistic measures for selecting and estimating the parameters related to specific algorithms used within the network. The problem representation allows a spatially varying tuning of parameters, depending on the different informative contents of the subareas of an image. An application of the proposed approach to an image processing problem is described. The processing chain chosen as an example consists of four modules. The first three algorithms correspond to network nodes. The topmost node is devoted to integrating information derived from applying different parameter settings to the algorithms of the chain. The nodes associated with data-transformation processes to be regulated are represented by an optical sensor and two filtering units (for edge-preserving and edge-extracting filterings), and a straight-segment detection module is used as an integration site.
机译:提出了一种分布式优化框架及其在交互图像处理算法网络行为调控中的应用。用于调节信息提取的算法参数明确表示为与所有网络节点关联的状态变量。还为节点提供消息传递过程,以表示相邻级别的参数设置之间的依存关系。调节问题被定义为在整个状态变量集(即参数)的可能配置的空间上评估的条件概率测度的联合概率最大化。通过考虑用于选择和估计与网络内使用的特定算法有关的参数的局部概率度量,以分布式方式对全局优化问题进行分区和解决。问题表示允许根据图像子区域的不同信息内容在空间上调整参数的调整。描述了所提出的方法在图像处理问题中的应用。作为示例选择的处理链包括四个模块。前三个算法对应于网络节点。最上层的节点致力于整合通过将不同参数设置应用于链的算法而得出的信息。与要调节的数据转换过程相关的节点由一个光学传感器和两个滤波单元(用于边缘保留和边缘提取滤波)表示,并且直段检测模块用作集成站点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号