首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >Nonlinear parameter estimation by weighted linear associative memory with nonzero interception
【24h】

Nonlinear parameter estimation by weighted linear associative memory with nonzero interception

机译:具有非零截距的加权线性联想记忆估计非线性参数

获取原文
获取原文并翻译 | 示例

摘要

The method of linear associative memory (LAM) has recently been applied in nonlinear parameter estimation. In the method of LAM, a model response, nonlinear with respect to the parameters, is approximated linearly by a matrix, which maps inversely from a response vector to a parameter vector. This matrix is determined from a set of initial training parameter vectors and their response vectors according to a given cost function, and can be updated recursively and adaptively with a pair of newly generated parameter-response vector. The advantage of LAM is that it can yield good estimation of the true parameter from a given observed response even if the initial training parameter vectors are far from the true values. In a previous paper, we have significantly improved the LAM method by introducing a weighted linear associative memory (WLAM) approach for nonlinear parameter estimation. In the WLAM approach, the contribution of each pair of parameter-response vector to the cost function is weighted in a way such that if a response vector is closer to the observed one then its pair plays more important role in the cost function. However, in both LAM and WLAM, the linear association is introduced with zero interceptions, which would not give an exact association even if the model function is linear and so will affect the efficiency of the estimations. In this paper, we construct a theory which introduces a linear association memory with a nonzero interception (WLAMB). The results of our estimation tests on two quite different models, Van der Pol equation and somatic shunt cable model, suggest that WLAMB can still significantly improve on WLAM.
机译:线性联想记忆(LAM)方法最近已被用于非线性参数估计。在LAM方法中,相对于参数非线性的模型响应由矩阵线性近似,该矩阵从响应向量到参数向量成反比。该矩阵由一组初始训练参数向量及其响应向量根据给定的成本函数确定,并且可以使用一对新生成的参数响应向量进行递归和自适应地更新。 LAM的优点是,即使初始训练参数向量与真实值相距甚远,它也可以从给定的观察响应中很好地估计真实参数。在先前的文章中,我们通过引入用于非线性参数估计的加权线性联想记忆(WLAM)方法,大大改进了LAM方法。在WLAM方法中,每对参数响应向量对成本函数的贡献均以如下方式加权:如果响应向量更接近观察到的一个,则其对在成本函数中将扮演更重要的角色。但是,在LAM和WLAM中,引入的线性关联都具有零截距,即使模型函数是线性的,也不会给出精确的关联,因此会影响估计的效率。在本文中,我们构建了一种理论,该理论引入了具有非零截距(WLAMB)的线性关联记忆。我们对两个完全不同的模型(范德波尔方程和体并联电缆模型)进行的估计测试结果表明,WLAMB仍可以在WLAM上显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号