首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >Neural classifiers and statistical pattern recognition: applications for currently established links
【24h】

Neural classifiers and statistical pattern recognition: applications for currently established links

机译:神经分类器和统计模式识别:当前建立的链接的应用

获取原文
获取原文并翻译 | 示例

摘要

Recent research has linked backpropagation (BP) and radial basis function (RBF) network classifiers, trained by minimizing the standard mean square error (MSE), to two main topics in statistical pattern recognition (SPR), namely the Bayes decision theory and discriminant analysis. However, so far, the establishment of these links has resulted in only a few practical applications for training, using, and evaluating these classifiers. The paper aims at providing more of these applications. It first illustrates that while training a linear output BP network, the explicit utilization of the network discriminant capability leads to an improvement in its classification performance. Then, for linear output BP and RBF networks, the paper defines a new generalization measure that provides information about the closeness of the network classification performance to the optimal performance. The estimation procedure of this measure is described and its use as an efficient criterion for terminating the learning algorithm and choosing the network topology is explained. The paper finally proposes an upper bound on the number of hidden units needed by an RBF network classifier to achieve an arbitrary value of the minimized MSE. Experimental results are presented to validate all proposed applications.
机译:最近的研究已将通过最小化标准均方误差(MSE)进行训练的反向传播(BP)和径向基函数(RBF)网络分类器与统计模式识别(SPR)中的两个主要主题,即贝叶斯决策理论和判别分析。但是,到目前为止,这些链接的建立仅产生了一些用于训练,使用和评估这些分类器的实际应用。本文旨在提供更多此类应用程序。首先说明,在训练线性输出BP网络时,网络判别能力的明确利用导致其分类性能的提高。然后,对于线性输出BP和RBF网络,本文定义了一种新的泛化度量,该度量提供有关网络分类性能与最佳性能的接近程度的信息。描述了该措施的估计过程,并说明了该措施作为终止学习算法和选择网络拓扑的有效标准。最后,本文提出了RBF网络分类器为获得最小MSE的任意值所需的隐藏单元数的上限。实验结果被提出来验证所有提出的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号