首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Including efficient object recognition capabilities in online robots: from a statistical to a Neural-network classifier
【24h】

Including efficient object recognition capabilities in online robots: from a statistical to a Neural-network classifier

机译:包括在线机器人中有效的对象识别功能:从统计到神经网络分类器

获取原文
获取原文并翻译 | 示例

摘要

For those situations in which the user wants to interact with the system by using, for example, voice commands, it would be convenient to refer to the objects by their names (e.g., "cube") instead of other types of interactions (e.g., "grasp object 1"). Thus, automatic object recognition is the first step in order to acquire a higher level of interaction between the user and the robot. Nevertheless, applying object recognition techniques when the camera images are being transmitted through the web is not an easy task. In this situation, images cannot have a very high resolution, which affects enormously the recognition process due to the inclusion of more errors while digitalizing the real image. Some experiments with the Universitat Jaume I Online Robot evaluate the performance of different neural-network implementations, comparing it to that of some distance-based object recognition algorithms. Results will show which combination of object features, and algorithms (both statistical and neural networks) is more appropriate to our purpose in terms of both effectiveness and computing time.
机译:对于用户想要通过使用例如语音命令与系统进行交互的那些情况,通过对象的名称(例如“多维数据集”)而不是其他类型的交互(例如, “抓取对象1”)。因此,自动对象识别是第一步,以便获得用户与机器人之间更高级别的交互。但是,在通过网络传输摄像机图像时应用对象识别技术并非易事。在这种情况下,图像不能具有非常高的分辨率,由于在对真实图像进行数字化处理时会包含更多错误,因此会极大地影响识别过程。使用Jaume I在线机器人大学进行的一些实验评估了不同神经网络实现的性能,并将其与某些基于距离的对象识别算法进行了比较。结果将显示在效率和计算时间方面,哪种对象特征和算法(统计网络和神经网络)的组合更适合我们的目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号