首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >A new method for constructing membership functions and fuzzy rulesfrom training examples
【24h】

A new method for constructing membership functions and fuzzy rulesfrom training examples

机译:通过训练实例构造隶属函数和模糊规则的新方法

获取原文
获取原文并翻译 | 示例

摘要

To extract knowledge from a set of numerical data and build up anrule-based system is an important research topic in knowledgenacquisition and expert systems. In recent years, many fuzzy systems thatnautomatically generate fuzzy rules from numerical data have beennproposed. In this paper, we propose a new fuzzy learning algorithm basednon the Α-cuts of equivalence relations and the Α-cuts ofnfuzzy sets to construct the membership functions of the input variablesnand the output variables of fuzzy rules and to induce the fuzzy rulesnfrom the numerical training data set. Based on the proposed fuzzynlearning algorithm, we also implemented a program on a Pentium PC usingnthe MATLAB development tool to deal with the Iris data classificationnproblem. The experimental results show that the proposed fuzzy learningnalgorithm has a higher average classification ratio and can generatenfewer rules than the existing algorithm
机译:从一组数值数据中提取知识并建立基于规则的系统是知识获取和专家系统中的重要研究课题。近年来,已经提出了许多从数值数据自动生成模糊规则的模糊系统。本文提出了一种新的模糊学习算法,该算法基于等价关系的A割和模糊集的A割来构造输入规则和输出规则的隶属函数,并从数值训练中推导模糊规则n数据集。基于提出的模糊学习算法,我们还使用MATLAB开发工具在奔腾PC上实现了一个程序,以处理Iris数据分类问题。实验结果表明,与现有算法相比,提出的模糊学习算法具有更高的平均分类率和更少的规则生成能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号