首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Attentional sequence-based recognition: Markovian and evidential reasoning
【24h】

Attentional sequence-based recognition: Markovian and evidential reasoning

机译:基于注意序列的识别:马尔可夫和证据推理

获取原文
获取原文并翻译 | 示例

摘要

Biological vision systems explore their environment via allocating their visual resources to only the interesting parts of a scene. This is achieved by a selective attention mechanism that controls eye movements. The data thus generated is a sequence of subimages of different locations and thus a sequence of features extracted from those images - referred to as attentional sequence. In higher level visual processing leading to scene cognition, it is hypothesized that the information contained in attentional sequences are combined and utilized by special mechanisms - although still poorly understood. However, developing models of such mechanisms prove out to be crucial - if we are to understand and mimic this behavior in robotic systems. In this paper, we consider the recognition problem and present two approaches to using attentional sequences for recognition: Markovian and evidential reasoning. Experimental results with our mobile robot APES reveal that simple shapes can be modeled and recognized by these methods - using as few as ten fixations and very simple features. For more complex scenes, longer attentional sequences or more sophisticated features may be required for cognition.
机译:生物视觉系统通过将视觉资源仅分配给场景的有趣部分来探索其环境。这是通过控制眼睛运动的选择性注意机制实现的。这样生成的数据是不同位置的子图像序列,因此是从那些图像中提取的一系列特征(称为关注序列)。假设在导致场景认知的更高级别的视觉处理中,尽管仍然知之甚少,但注意序列中包含的信息是通过特殊机制进行组合和利用的。然而,事实证明,开发这种机制的模型至关重要-如果我们要理解并模仿机器人系统中的这种行为。在本文中,我们考虑了识别问题,并提出了使用注意力序列进行识别的两种方法:马尔可夫和证据推理。我们的移动机器人APES的实验结果表明,可以使用这些方法对简单的形状进行建模和识别-只需使用十个固定点和非常简单的功能即可。对于更复杂的场景,可能需要更长的注意力序列或更复杂的特征才能进行认知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号