首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems
【24h】

Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems

机译:高斯分布的协进化粒子群算法求解约束优化问题

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global s. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness
机译:在这种对应关系中,提出了一种基于协进化粒子群优化的方法来解决被约束为最小-最大问题的约束优化问题。在标准或规范粒子群优化(PSO)中,使用统一的概率分布为局部和全局s的加速系数生成随机数。我们提出了一个高斯概率分布来生成PSO的加速系数。优化算法使用了两个使用高斯分布的PSO,并在一组著名的基准约束优化问题上进行了测试。已将结果与标准PSO(压缩因子)和协进化遗传算法进行了比较。仿真结果表明了该算法在有效性和鲁棒性方面的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号