首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Stratification Approach for 3-D Euclidean Reconstruction of Nonrigid Objects From Uncalibrated Image Sequences
【24h】

Stratification Approach for 3-D Euclidean Reconstruction of Nonrigid Objects From Uncalibrated Image Sequences

机译:从非校准图像序列对非刚性物体进行3-D欧氏重建的分层方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of 3D reconstruction of nonrigid objects from uncalibrated image sequences. Under the assumption of affine camera and that the nonrigid object is composed of a rigid part and a deformation part, we propose a stratification approach to recover the structure of nonrigid objects by first reconstructing the structure in affine space and then upgrading it to the Euclidean space. The novelty and main features of the method lies in several aspects. First, we propose a deformation weight constraint to the problem and prove the invariability between the recovered structure and shape bases under this constraint. The constraint was not observed by previous studies. Second, we propose a constrained power factorization algorithm to recover the deformation structure in affine space. The algorithm overcomes some limitations of a previous singular-value-decomposition-based method. It can even work with missing data in the tracking matrix. Third, we propose to separate the rigid features from the deformation ones in 3D affine space, which makes the detection more accurate and robust. The stratification matrix is estimated from the rigid features, which may relax the influence of large tracking errors in the deformation part. Extensive experiments on synthetic data and real sequences validate the proposed method and show improvements over existing solutions.
机译:本文解决了从未经校准的图像序列对非刚性物体进行3D重建的问题。在仿射相机的假设下,非刚性物体由刚性部分和变形部分组成,我们提出了一种分层方法来恢复非刚性物体的结构,方法是首先在仿射空间中重构结构,然后将其升级到欧几里得空间。该方法的新颖性和主要特征在于几个方面。首先,我们针对该问题提出了变形权重约束条件,并证明了在该约束条件下恢复的结构和形状基础之间的不变性。先前的研究未观察到该限制。其次,提出一种约束功率因数分解算法,以恢复仿射空间中的变形结构。该算法克服了以前基于奇异值分解的方法的一些局限性。它甚至可以处理跟踪矩阵中的缺失数据。第三,我们建议将3D仿射空间中的刚性特征与变形特征分开,以使检测更加准确和鲁棒。分层矩阵是根据刚性特征估算的,这可以缓解变形部分中较大跟踪误差的影响。在合成数据和真实序列上进行的大量实验验证了该方法的有效性,并显示了对现有解决方案的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号