首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >An Approach to Solve Group-Decision-Making Problems With Ordinal Interval Numbers
【24h】

An Approach to Solve Group-Decision-Making Problems With Ordinal Interval Numbers

机译:用序数区间数解决群决策问题的一种方法

获取原文
获取原文并翻译 | 示例

摘要

The ordinal interval number is a form of uncertain preference information in group decision making (GDM), while it is seldom discussed in the existing research. This paper investigates how the ranking order of alternatives is determined based on preference information of ordinal interval numbers in GDM problems. When ranking a large quantity of ordinal interval numbers, the efficiency and accuracy of the ranking process are critical. A new approach is proposed to rank alternatives using ordinal interval numbers when every ranking ordinal in an ordinal interval number is thought to be uniformly and independently distributed in its interval. First, we give the definition of possibility degree on comparing two ordinal interval numbers and the related theory analysis. Then, to rank alternatives, by comparing multiple ordinal interval numbers, a collective expectation possibility degree matrix on pairwise comparisons of alternatives is built, and an optimization model based on this matrix is constructed. Furthermore, an algorithm is also presented to rank alternatives by solving the model. Finally, two examples are used to illustrate the use of the proposed approach.
机译:有序区间数是群体决策(GDM)中不确定偏好信息的一种形式,而在现有研究中很少讨论。本文研究了如何根据GDM问题中的有序区间数的偏好信息确定替代方案的排名顺序。当对大量有序间隔数进行排序时,排序过程的效率和准确性至关重要。当一种序数区间编号中的每个排序序数被认为在其区间中均匀且独立地分布时,提出了一种使用序数区间编号对备选方案进行排序的新方法。首先,我们通过比较两个序数区间数和相关的理论分析,给出了可能性度的定义。然后,通过对多个有序区间数进行比较,对备选方案进行排序,建立了基于备选方案成对比较的集体期望可能性度矩阵,并基于该矩阵构建了优化模型。此外,还提出了一种通过求解模型对备选方案进行排名的算法。最后,使用两个示例来说明所提出方法的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号