首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Framelet Kernels With Applications to Support Vector Regression and Regularization Networks
【24h】

Framelet Kernels With Applications to Support Vector Regression and Regularization Networks

机译:具有支持向量回归和正则化网络的应用的小框架核

获取原文
获取原文并翻译 | 示例

摘要

Support vector regression and regularization networks are kernel-based techniques for solving the regression problem of recovering the unknown function from sample data. The choice of the kernel function, which determines the mapping between the input space and the feature space, is of crucial importance to such learning machines. Estimating the irregular function with a multiscale structure that comprises both the steep variations and the smooth variations is a hard problem. The result achieved by the traditional Gaussian kernel is often unsatisfactory, because it cannot simultaneously avoid underfitting and overfitting. In this paper, we present a new class of kernel functions derived from the framelet system. A framelet is a tight wavelet frame constructed via multiresolution analysis and has the merit of both wavelets and frames. The construction and approximation properties of framelets have been well studied. Our goal is to combine the power of framelet representation with the merit of kernel methods on learning from sparse data. The proposed framelet kernel has the ability to approximate functions with a multiscale structure and can reduce the influence of noise in data. Experiments on both simulated and real data illustrate the usefulness of the new kernels.
机译:支持向量回归和正则化网络是用于解决从样本数据中恢复未知函数的回归问题的基于内核的技术。决定输入空间和特征空间之间映射关系的内核函数的选择对于此类学习机至关重要。用包括陡峭变化和平滑变化的多尺度结构来估计不规则函数是一个难题。传统的高斯核所获得的结果通常不能令人满意,因为它不能同时避免拟合不足和拟合过度。在本文中,我们提出了从框架系统派生的一类新的内核函数。小框架是通过多分辨率分析构造的紧小波框架,具有小波和框架的优点。小框架的构造和近似性质已得到很好的研究。我们的目标是将小框架表示的功能与内核方法从稀疏数据中学习的优点相结合。所提出的框架内核具有逼近具有多尺度结构的函数的能力,并且可以减少数据中噪声的影响。在模拟数据和实际数据上进行的实验说明了新内核的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号