【24h】

Recognition of Affect Based on Gait Patterns

机译:基于步态模式的情感识别

获取原文
获取原文并翻译 | 示例

摘要

To provide a means for recognition of affect from a distance, this paper analyzes the capability of gait to reveal a person's affective state. We address interindividual versus person-dependent recognition, recognition based on discrete affective states versus recognition based on affective dimensions, and efficient feature extraction with respect to affect. Principal component analysis (PCA), kernel PCA, linear discriminant analysis, and general discriminant analysis are compared to either reduce temporal information in gait or extract relevant features for classification. Although expression of affect in gait is covered by the primary task of locomotion, person-dependent recognition of motion capture data reaches 95% accuracy based on the observation of a single stride. In particular, different levels of arousal and dominance are suitable for being recognized in gait. It is concluded that gait can be used as an additional modality for the recognition of affect. Application scenarios include monitoring in high-security areas, human–robot interaction, and cognitive home environments.
机译:为了提供从远处识别情感的方法,本文分析了步态揭示一个人的情感状态的能力。我们将解决个体间识别与个人依赖识别,基于离散情感状态的识别与基于情感维度的识别以及针对情感的有效特征提取。比较主成分分析(PCA),内核PCA,线性判别分析和一般判别分析,以减少步态中的时间信息或提取相关特征进行分类。尽管步态上的情感表达已包含在运动的主要任务中,但基于对单个步幅的观察,运动捕捉数据的基于人的识别精度达到了95%。特别地,不同程度的唤醒和主导适合于步态识别。结论是,步态可以用作识别情感的附加方式。应用场景包括在高安全性区域,人机交互以及认知家庭环境中的监视。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号