首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Neural–Genetic Synthesis for State-Space Controllers Based on Linear Quadratic Regulator Design for Eigenstructure Assignment
【24h】

Neural–Genetic Synthesis for State-Space Controllers Based on Linear Quadratic Regulator Design for Eigenstructure Assignment

机译:基于线性二次调节器特征结构分配的状态空间控制器神经遗传综合

获取原文
获取原文并翻译 | 示例

摘要

Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
机译:为了综合状态空间控制器,提出了一种基于线性二次调节器设计的神经遗传模型,用于多变量动态系统的本征结构分配。神经遗传模型代表遗传算法和递归神经网络(RNN)的融合,分别执行加权矩阵的选择和代数Riccati方程解。使用四阶电路模型来评估计算智能范式的收敛性和控制设计方法的性能。遗传搜索收敛性评估是根据适应度函数统计信息和RNN收敛性进行的,RNN收敛性是根据参数偏差的能量和范数情况评估的。通过脉冲响应,奇异值和模态分析在时域和频域中评估控制问题的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号