首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Incremental Multi-Scale Search Algorithm for Dynamic Path Planning With Low Worst-Case Complexity
【24h】

Incremental Multi-Scale Search Algorithm for Dynamic Path Planning With Low Worst-Case Complexity

机译:低复杂度情况下动态路径规划的增量式多尺度搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Path-planning (equivalently, path-finding) problems are fundamental in many applications, such as transportation, VLSI design, robot navigation, and many more. In this paper, we consider dynamic shortest path-planning problems on a graph with a single endpoint pair and with potentially changing edge weights over time. Several algorithms exist in the literature that solve this problem, notably among them the Lifelong Planning algorithm. The algorithm is an incremental search algorithm that replans the path when there are changes in the environment. In numerical experiments, however, it was observed that the performance of is sensitive in the number of vertex expansions required to update the graph when an edge weight value changes or when a vertex is added or deleted. Although, in most cases, the classical requires a relatively small number of updates, in some other cases the amount of work required by the to find the optimal path can be overwhelming. To address this issue, in this paper, we propose an extension of the baseline algorithm, by making efficient use of a multiscale representation of the environment. This multiscale representation allows one to quickly localize the changed edges, and subsequently update the priority queue efficiently. This incremental multiscale ( for short) algorithm leads to an improvement both in terms of robustness and computational complexity-in the worst case-when compared to the classical . Numerical experiments validate the aforementioned claims.
机译:在许多应用中,例如运输,VLSI设计,机器人导航等等,路径规划(相当于路径寻找)问题至关重要。在本文中,我们考虑在具有单个端点对并且随着时间的推移可能改变边权重的图形上的动态最短路径规划问题。文献中存在几种解决该问题的算法,特别是终身计划算法。该算法是一种增量搜索算法,可在环境发生变化时重新规划路径。但是,在数值实验中,观察到当边缘权重值更改或添加或删除顶点时,更新曲线图所需的顶点扩展数量的性能很敏感。尽管在大多数情况下,经典方法只需要相对少量的更新,但在其他一些情况下,找到最佳路径所需的工作量却很庞大。为了解决这个问题,在本文中,我们通过有效利用环境的多尺度表示,提出了基线算法的扩展。这种多尺度表示允许人们快速定位变化的边缘,并随后有效地更新优先级队列。与经典算法相比,这种增量式多尺度(简而言之)算法在鲁棒性和计算复杂性方面都得到了改进(在最坏的情况下)。数值实验验证了上述主张。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号