首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Knowledge Discovery Employing Grid Scheme Least Squares Support Vector Machines Based on Orthogonal Design Bee Colony Algorithm
【24h】

Knowledge Discovery Employing Grid Scheme Least Squares Support Vector Machines Based on Orthogonal Design Bee Colony Algorithm

机译:基于正交设计蜂群算法的网格计划最小二乘支持向量机知识发现

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a concept for machine learning that integrates a grid scheme (GS) into a least squares support vector machine (LSSVM) (called GS-LSSVM) with a mixed kernel in order to solve data classification problems. The purpose of GS-LSSVM is to execute feature selections, mixed kernel applications, and parameter optimization in a learning paradigm. The proposed learning paradigm includes three steps. First, an orthogonal design is utilized to initialize the number of input features and candidate parameters stored in GS. Then, the features are randomly selected according to the first grid acquired from the first step. These features and the candidate parameters are then passed to LSSVM. Finally, an artificial bee colony algorithm, the recently popular heuristic algorithm, is used to optimize parameters for LSSVM learning. For illustration and evaluation purposes, ten remarkable data sets from the University of California Irvine database are used as testing targets. The experimental results reveal that the proposed GS-LSSVM can produce a classification model more easily interpreted using a small number of features. In terms of accuracy (hit ratio), the GS-LSSVM can significantly outperform other methods listed in this paper. These findings imply that the GS-LSSVM is a promising approach to classification exploration.
机译:本文提出了一种机器学习的概念,该概念将网格方案(GS)集成到具有混合内核的最小二乘支持向量机(LSSVM)(称为GS-LSSVM)中,以解决数据分类问题。 GS-LSSVM的目的是在学习范例中执行功能选择,混合内核应用程序和参数优化。拟议的学习范式包括三个步骤。首先,利用正交设计来初始化存储在GS中的输入特征和候选参数的数量。然后,根据从第一步获取的第一网格随机选择特征。然后将这些功能和候选参数传递给LSSVM。最后,使用人工蜂群算法(最近流行的启发式算法)来优化用于LSSVM学习的参数。出于说明和评估的目的,使用加州大学尔湾分校数据库中的十个重要数据集作为测试目标。实验结果表明,提出的GS-LSSVM可以使用少量特征生成更易于解释的分类模型。在准确性(命中率)方面,GS-LSSVM可以大大优于本文中列出的其他方法。这些发现表明,GS-LSSVM是一种有前途的分类探索方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号