首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Fuzzily Connected Multimodel Systems Evolving Autonomously From Data Streams
【24h】

Fuzzily Connected Multimodel Systems Evolving Autonomously From Data Streams

机译:从数据流自主发展的模糊连接多模型系统

获取原文
获取原文并翻译 | 示例

摘要

A general framework and a holistic concept are proposed in this paper that combine computationally light machine learning from streaming data with the online identification and adaptation of dynamic systems in regard to their structure and parameters. According to this concept, the system is assumed to be decomposable into a set of fuzzily connected simple local models. The main thrust of this paper is in the development of an original approach for the self-design, self-monitoring, self-management, and self-learning of such systems in a dynamic manner from data streams which automatically detect and react to the shift in the data distribution by evolving the system structure. Novelties of this contribution lie in the following: 1) the computationally simple approach (simpl_e_Clustering—simplified evolving Clustering) to data space partitioning by recursive evolving clustering based on the relative position of the new data sample to the mean of the overall data, 2) the learning technique for online structure evolution as a reaction to the shift in the data distribution, 3) the method for online system structure simplification based on utility and inputs/feature selection, and 4) the novel graphical illustration of the spatiotemporal evolution of the data stream. The application domain for this computationally efficient technique ranges from clustering, modeling, prognostics, classification, and time-series prediction to pattern recognition, image segmentation, vector quantization, etc., to more general problems in various application areas, e.g., intelligent sensors, mobile robotics, advanced manufacturing processes, etc.
机译:本文提出了一个通用框架和整体概念,将流数据的轻量级机器学习与在线识别和动态系统适应性相结合。根据此概念,假定该系统可分解为一组模糊连接的简单局部模型。本文的主要目的在于开发一种新颖的方法,以动态方式从数据流中自动设计,自我监控,自我管理和自我学习此类系统,这些数据流可自动检测并响应变化通过发展系统结构来进行数据分配。这种贡献的新颖之处在于:1)通过基于新数据样本相对于整体数据均值的相对位置的递归演化聚类,对数据空间进行分区的计算简单方法(simpl_e_Clustering-简化演化聚类)。在线结构演化的学习技术,以应对数据分布的变化; 3)基于效用和输入/特征选择的在线系统结构简化方法,以及4)数据的时空演化的新颖图示流。这种高效计算技术的应用领域从聚类,建模,预测,分类和时间序列预测到模式识别,图像分割,矢量量化等,再到各种应用领域(例如智能传感器)中的更普遍的问题,移动机器人,先进的制造工艺等

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号