首页> 外文OA文献 >Evolving fuzzy systems from data streams in real-time
【2h】

Evolving fuzzy systems from data streams in real-time

机译:从数据流实时发展模糊系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An approach to real-time generation of fuzzy rule-base systems of extended Takagi-Sugeno (xTS) type from data streams is proposed in the paper. The xTS fuzzy system combines both zero and first order Takagi-Sugeno (TS) type systems. The fuzzy rule-base (system structure) evolves starting 'from scratch' based on the data distribution in the joint input/output data space. An incremental clustering procedure that takes into account the non-stationary nature of the data pattern and generates clusters that are used to form fuzzy rule based systems antecedent part in on-line mode is used as a first stage of the non-iterative learning process. This structure proved to be computationally efficient and powerful to represent in a transparent way complex non-linear relationships. The decoupling of the learning task into a non-iterative, recursive (thus computationally very efficient and applicable in real-time) clustering with a modified version of the well known recursive parameter estimation technique leads to a very powerful construct - evolving xTS (exTS). It is transparent and linguistically interpretable. The contributions of this paper are: i) introduction of an adaptive recursively updated radius of the clusters (zone of influence of the fuzzy rules) that learns the data distribution/variance/scatter in each cluster; ii) a new condition to replace clusters that excludes contradictory rules; iii) an extended formulation that includes both zero order TS and simplified Mamdani multi-input-multi-output (MIMO) systems; iv) new improved formulation of the membership functions, which closer resembles the normal Gaussian distribution; v) introduction of measures of clusters quality that are used to form the antecedent parts of respective fuzzy rules, namely their age and support; vi) experimental results with a well known benchmark problem as well as with real experimental data of concentration of exhaust gases (NOx) in on-line modeling of car engine test rigs
机译:本文提出了一种从数据流中实时生成扩展的Takagi-Sugeno(xTS)类型的模糊规则系统的方法。 xTS模糊系统结合了零阶和一阶Takagi-Sugeno(TS)类型的系统。模糊规则库(系统结构)基于联合输入/输出数据空间中的数据分布而从头开始发展。考虑到数据模式的非平稳性并生成用于在在线模式下形成基于模糊规则的系统之前部分的聚类的增量聚类过程用作非迭代学习过程的第一阶段。这种结构被证明在计算上是有效的,并且功能强大,可以透明地表示复杂的非线性关系。将学习任务分解为非迭代的,递归的(因此在计算上非常有效并且适用于实时)聚类,并且使用了著名的递归参数估计技术的改进版本,从而产生了非常强大的构造-不断发展的xTS(exTS) 。它是透明的并且在语言上可以解释。本文的贡献是:i)引入自适应递归更新的聚类半径(模糊规则的影响区域),以了解每个聚类中的数据分布/方差/散布; ii)替换集群的新条件,排除了相互矛盾的规则; iii)扩展的公式,包括零阶TS和简化的Mamdani多输入多输出(MIMO)系统; iv)隶属函数的新改进公式,更类似于正态高斯分布; v)引入集群质量的度量,这些度量用于形成各个模糊规则的前期部分,即它们的年龄和支持度; vi)在汽车发动机试验台的在线建模中,实验结果具有众所周知的基准问题以及真实的废气浓度(NOx)实验数据

著录项

  • 作者

    Angelov Plamen; Zhou Xiaowei;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号